Synthesis of CMOS Gates

Let's consider the design synthesis of CMOS gates by considering the design synthesis of PUN and PDN separately.

PDN Design Synthesis

1. If the PDN is conducting, then the output will be low.

Thus, we must find a Boolean expression for the complemented output \bar{y}.

In turn, the PDN can only be conducting if one or more of the NMOS devices are conducting-and NMOS devices will be conducting (i.e., triode mode) when the inputs are high ($V_{G S N}$ $=V_{D O}$.

Thus, we must express \bar{Y} in terms of un-complemented inputs A, B, C, etc (i.e., $\bar{y}=f(A, B, C)$).

$$
\text { e.g., } \rightarrow \bar{y}=A+B C
$$

This step may test our Boolean algebraic skills!
2. Then, we realize AND operations in $\bar{Y}=f(A, B, C)$ with series NMOS devices. E.G.:

3. Likewise, we realize OR operations with parallel NMOS devices. E.G.:

Note that $Y=0$ if either
$A=V_{D D} O R B=V_{D D}$.
$\therefore \bar{y}=A+B$

PUN Design Synthesis

1. If the PUN is conducting, then the output will be high.

Thus, we must find a Boolean expression for the uncomplemented output Y.

In turn, the PUN can only be conducting if one or more of the PMOS devices are conducting-and PMOS devices will be conducting (i.e., triode mode) when the inputs are low ($V_{G S P}=$ $-V_{D O}$).

Thus, we must express Y in terms of complemented inputs $\bar{A}, \bar{B}, \bar{C}$, etc (i.e., $Y=f(\bar{A}, \bar{B}, \bar{C})$).

$$
\text { e.g., } \rightarrow Y=\bar{A}+\bar{B} \bar{C}
$$

This step may test our Boolean algebraic skills!
2. Then, we realize AND operations with series PMOS devices. E.G.:

Note that $Y=V_{D D}$ if both $A=0$ AND $B=0$.
$\therefore \quad Y=\bar{A} \bar{B}$
3. Likewise, we realize OR operations with parallel PMOS devices. E.G.:

Note that $y=V_{D D}$ if either $A=0 \quad O R \quad B=0$.

$$
\therefore \quad Y=\bar{A}+\bar{B}
$$

