Synthesis of CMOS Gates

Let's consider the design synthesis of CMOS gates by considering the design synthesis of PUN and PDN separately.

PDN Design Synthesis

1. If the PDN is conducting, then the output will be low. Thus, we must find a Boolean expression for the complemented output \overline{Y} .

In turn, the PDN can only be conducting **if one or more** of the NMOS devices are **conducting**—and **NMOS** devices will be conducting (i.e., **triode** mode) when the **inputs are high** ($V_{GSN} = V_{DD}$).

Thus, we must express \overline{Y} in terms of un-complemented inputs A, B, C, etc (i.e., $\overline{Y} = f(A, B, C)$).

e.g., $\rightarrow \overline{Y} = A + BC$

This step may test our **Boolean algebraic** skills!

PUN Design Synthesis

1. If the PUN is conducting, then the output will be high. Thus, we must find a Boolean expression for the uncomplemented output Y.

In turn, the PUN can only be conducting **if one or more** of the PMOS devices are **conducting**—and **PMOS** devices will be conducting (i.e., **triode** mode) when the **inputs are low** (V_{GSP} = - V_{DD}).

Thus, we **must** express Y in terms of complemented inputs $\overline{A}, \overline{B}, \overline{C}$, etc (i.e., $Y = f(\overline{A}, \overline{B}, \overline{C})$).

e.g.,
$$\rightarrow Y = \overline{A} + \overline{B}\overline{C}$$

This step may test our Boolean algebraic skills!

